国际空间站的主要结构

2018-05-07

主要结构

国际空间站总体设计采用桁架挂舱式结构,即以桁架为基本结构,增压舱和其它各种服务实施挂靠在桁架上,形成桁架挂舱式空间站。其总体布局如图所示。大体上看,国际空间站可视为由两大部分立体交叉组合而成:一部分是以俄罗斯的多功能舱为基础,通过对接舱段及节点舱,与俄罗斯服务舱、实验舱、生命保障舱、美国实验舱、日本实验舱、欧空局的“哥伦布”轨道设施等对接,形成空间站的核心部分;另一部分是在美国的桁架结构上,装有加拿大的遥操作机械臂服务系统和空间站舱外设备,在桁架的两端安装四对大型太阳能电池帆板。这两大部分垂直交叉构成“龙骨架”,不仅加强了空间站的刚度,而且有利于各分系统和科学实验设备、仪器工作性能的正常发挥,有利于宇航员出舱装配与维修等。

国际空间站的各种部件是由合作各国家分别研制,其中美国和俄罗斯提供的部件最多,其次是欧空局、日本、加拿大和意大利。这些部件中核心的部件包括多功能舱、服务舱、实验舱和遥操作机械臂等。俄罗斯研制的多功能舱(FGB)具有推进、导航、通信、发电、防热、居住、贮存燃料和对接等多种功能,在国际空间站的初期装配过程中提供电力、轨道高度控制及计算机指令;在国际空间站运行期间,可提供轨道机动能力和贮存推进剂。俄罗斯服务舱作为国际空间站组装期间的控制中心,用于整个国际空间站的姿态控制和再推进;它带有卫生间、睡袋、冰箱等生保设施,可容纳3名宇航员居住;它还带有一对太阳能电池板,可向俄罗斯部件提供电源。实验舱是国际空间站进行科学研究的主要场所,包括美国的实验舱和离心机舱、俄罗斯的研究舱、欧空局的“哥伦布”轨道设施和日本实验舱。舱内的实验设备和仪器大部分都是放在国际标准机柜内,以便于维护和更换。加拿大研制的遥操作机械臂长17.6米,能搬动重量为20吨左右、尺寸为18.3米×4.6米的有效载荷,可用于空间站的装配与维修、轨道器的对接与分离、有效载荷操作以及协助出舱活动等,在国际空间站的装配和维护中将发挥关键作用。

主要构件

国际空间站由下列部分组成:俄罗斯"进步-M45"、"联盟-TM23"、"进步-M-C01"飞船,俄罗斯的"晨星"号服务舱、"曙光"号工作舱,美国的"团结"号连接舱和"女神"号实验舱、俄"黎明"号小型实验舱等。

空间站共有俄罗斯、美国、欧盟和日本发射的13个舱,重量400吨。

"曙光"号工作舱

"曙光"工作舱是国际空间站的第一个组件,由俄罗斯赫鲁尼切夫空间中心和美国波音公司共同研制而成。根据1995年8月签订的合同,赫鲁尼切夫中心负责货运舱的设计、生产和试验。赫鲁尼切夫中心于1996年11月27日,即比预定发射时间提前一年完成"曙光"号工作舱的组装工作。但由于国际空间站的其他一些部件没有完工,"曙光"号被两度推迟发射。

"曙光"号重量为24.2吨(其中包括4.5吨燃料),长13米,内部容积约72立方米(可用面积为40平方米)。它可以在不补充燃料的情况下连续飞行430昼夜。

"曙光"号一个与和平号空间站类似的大型舱体,用作空间站的基础,能提供电源、推进、导航、通信、姿控、温控、充压的小气候环境等多种功能。它由和平号空间站上的晶体舱演变而来,设计寿命13年,电源最大功率为6千瓦,装有可接4个航天器的对接件。

1998年11月20日,俄罗斯"质子-K"号火箭把"曙光"号送入预定轨道。

"团结"号节点舱 (unity node module)

"团结"号节点舱是美国为国际空间站建造的第一个组件,也是国际空间站的第二个组件。

"团结"号节点舱耗资3亿美元,直径5米、长6米,设有6个舱门。它的作用是充当对接口,连接未来升空的其它舱。

1998年12月4日,"团结"号随美国"奋进"号航天飞机升空。12月6日,"团结"号与"曙光"号对接。

"星辰"号服务舱 (zvezda (star) service module)

"星辰"号服务舱由俄罗斯承建,是国际空间站的核心舱。"星辰"号长13米,宽30米,重19吨,造价为3.2亿美元。

服务舱由过度舱、生活舱和工作舱等3个密封舱和一个用来放置燃料桶、发动机和通信天线的非密封舱组成。生活舱中设有供宇航员洗澡和睡眠的单独"房间",舱内有带冰箱的厨房、餐桌、供宇航员锻炼身体的运动器械。舱体上设计的14个舷窗,可供宇航员眺望浩瀚的星空。

"星辰"号配有定位和电视联系系统,可保障服务舱与俄罗斯科罗廖夫地面飞行控制中心和美国休斯敦地面飞行控制中心的直接联系。

"星辰"号共有4个对接口,可用于接待载人飞船或货运飞船。

2000年7月12日,"星辰"号由"质子-K"火箭送入太空;26日,"星辰"号服务舱与国际空间站联合体对接。

"命运"号实验舱 (destiny laboratory module)

2001年2月7日,"命运"号实验舱随美国"阿特兰蒂斯"号航天飞机升空。"命运"号实验舱价值14亿美元,是国际空间站中最昂贵的组件。它由美国波音公司制造,形似圆筒,长9.3米、直径4.3米,重13.6吨,上有41.5万个零件。它不仅是未来空间站成员在接近零重力的状态下执行科学研究任务的基地,也将作为国际空间站的指挥和控制中心,是国际空间站6个实验室中最重要的实验舱之一。

"莱奥纳尔多"号多功能后勤舱 (leonardo multipurpose logistics module)

"莱奥纳尔多"号多功能后勤舱由意大利研制,价值1.6亿美元。它是一个由金属铝制成,长21英尺(约为6.4米)、直径为15英尺(约4.6米)的圆筒,分为16个货箱,能携带9.1吨货物。后勤舱可重复使用,其功能是为国际空间站运送必需的物资,再将空间站上的废弃物带回地面。

空气阻隔舱 (airlock)

空气阻隔舱又称压力舱,由金属铝制造,重约6吨,造价1.64亿美元。空气阻隔舱共有两个舱室,一个供宇航员执行太空行走任务之前更换宇航服,另一个为宇航员减压和漂浮到太空的接口。舱内有4个气罐,各重540千克,用于给空气阻隔舱加压。

2001年7月15日,空气阻隔舱由美国"阿特兰蒂斯"号航天飞机和国际空间站上的宇航员联合安装到空间站。空气阻隔舱是国际空间站与太空间的通道,是航天器有压空间与太空真空环境间的缓冲地带,它的安装使空间站内的宇航员不必再等航天飞机的到来就可以进行太空行走。

加拿大第二臂 (Canadarm2)

"加拿大第二臂"又被称为"大臂",由高强度的金属铝、不锈钢和环氧石墨制成,长19米,重量为1.63吨。

这只长约17米的巨型机械臂的设计概念是1984年美国前总统里根提议建设"自由"空间站时产生的,其最初研制目的是,在航天飞机不能自行与空间站对接时依靠机械臂将航天飞机拉到空间站旁。"加拿大第二臂"由加拿大研制,并由美国"奋进"号航天飞机于2001年4月19日携带升空,22日被安装到国际空间站上。与多次随航天飞机升空执行任务的小机械臂相比,它不仅比多次随航天飞机升空执行任务的"小臂"更长,也更结实、更灵活。

"码头"多功能对接舱 (mooring compartment module)

"码头"多功能对接舱由俄罗斯"能源"火箭航天公司研制,重约4吨,体积为13立方米。对接舱一端与"星辰"号服务舱连接,另一端的对接装置能与"进步"系列货运飞船和"联盟"系列载人飞船对接。对接舱的一侧还有一个隔舱,当宇航员穿上宇航服,调节好隔舱中的气压后,就可以打开隔舱门进行太空行走。多功能舱对接舱有助于增加国际空间站与地面间的货物、人员运输。

"码头"多功能对接舱于2001年9月17日安装到国际空间站。

"黎明"号小型实验舱

俄"黎明"号小型实验舱在2010年5月由美"阿特兰蒂斯"号航天飞机运送至国际空间站。"黎明"号实验舱长约7米,重约7.8吨,主要用于科学实验。

构成组件

整个空间站由众多组件构成:

曙光号功能货仓:航次1AR,运载(质子号)发射时间(1998-11-20)长度(12.56m)直径(4.11m)质量(加助燃剂19323kg/空7893kg)

团结号节点舱:航次2A-STS-88,运载(奋进号)发射时间(1998-12-4)长度(5.49m)直径(4.57m)质量(11612kg)

星辰号服务舱:航次1R,运载(质子号)发射时间(2000-7-12)长度(13.1m)直径(4.15m)质量(19050kg)

国际空间站Z-1衍架:航次3A-STS-92,运载(发现号)发射时间(2000-10-11)长度(4.9m)直径(4.2m)质量(9978kg)国际空间站P-6衍架和太阳能电池板:航次4A-STS-97,运载(奋进号)发射时间(2000-11-30)长度(73.2m)直径(11.6m)质量(15815kg)命运号实验舱:航次5A-STS-98,运载(亚特兰蒂斯号)发射时间(2001-2-7)长度(8.53m)直径(4.27m)质量(空13547/满24023kg)

外部装置平台:航次5A1-STS-102,运载(亚特兰蒂斯号)发射时间(2001-3-13)长度(2.44m)直径(0.46m)质量(未知)

移动维修系统(加拿大臂2):航次6A-STS-100,运载(奋进号)发射时间(2001-4-19)长度(17.6m)直径(0.35m)质量(1796kg)寻求号气舺舱:航次(7A-STS-104)运载(亚特兰蒂斯号)发射时间(2001-7-12)长度(5.64m)直径(4m)质量(6064kg)码头号对接舱:航次(4R-进步-M-S-

O1)运载(进步号)发射时间(2001-9-14)长度(4.91m)直径(2.56m)质量(3580kg)

国际空间站SO衍架:航次(8A-STS-110)运载(亚特兰蒂斯号)发射时间(2002-4-8)长度(13.4m)直径(4.6m)质量(12623kg)

移动维修系统-机械臂移动平台:航次(UF-2-STS-111)运载(奋进号)发射时间(2002-6-5)长度(5.7m)直径(2.9m)质量(1450kg)国

际空间站S1衍架:航次(9A-STS-112)搭载(亚特兰蒂斯号)发射时间(2002-10-7)长度(13.7m)直径(4.6m)质量(12554kg)

国际空间站P1衍架:航次(11A-STS-113)搭载(奋进号)发射时间(2002-11-23)长度(13.7m)直径(4.6m)质量(14003kg)

主要功能

组装成功后的国际空间站将作为科学研究和开发太空资源的手段,为人类提供一个长期在太空轨道上进行对地观测和天文观测的机会。

在对地观测方面,国际空间站比遥感卫星要优越。首先它是有人参与到遥感任务之中,因而当地球上发生地震、海啸或火山喷发等事件时,在站上的航天员可以及时调整遥感器的各种参数,以获得最佳观测效果;当遥感器等仪器设备发生故障时,又可随时维修到正常工作状态;它还可以通过航天飞机或飞船更换遥感仪器设备,使新技术及时得到应用而又节省经费。用它对地球大气质量进行监测,可长期预报气候变化。在陆地资源开发,海洋资源利用等方面,也都会从中受益。国际空间站在天文观测上要比其他航天器优越得多,是了解宇宙天体位置、分布、运动结构、物理状态、化学组成及其演变规律的重要手段。因为有人参于观测,再加上空间站在太空的活动位置和多方向性,以及机动的观察测定方法,因而可充分发挥仪器设备的作用。通过国际空间站,天文学家不仅能获得宇宙射线,亚原子粒子等重要信息,了解宇宙奥秘,而且还能对影响地球环境的天文事件(如太阳耀斑、暗条爆发等)作出快速反应,及时保护地球,保护在太空飞行的航天器及其成员。

国际空间站上的生命科学研究,可分为人体生命与重力生物学两方面:人体生命科学的研究成果可直接促进航天医学的发展,例如,通过多种参数来判断重力对航天员身体的影响,可提高对人的大脑、神经和骨骼及肌肉等方面的研究水平。重力生物学和材料科学的研究与应用有广阔的前景,而国际空间站的微重力条件要比和平号空间站和航天飞机优越得多,特别是在材料发展上可能起到一次革命性的进展。

仅就太空微重力这一特殊因素来说,国际空间站就能给研究生命科学、生物技术、航天医学、材料科学、流体物理、燃烧科学等提供比地球上好得多、甚至在地球无法提供的优越条件,直接促进这些科学的进步。同时,国际空间站的建成和应用,也是向着建造太空工厂、太空发电站,进行太空旅游,建立永久性居住区(太空城堡)向太空其他星球移民等载人航天的远期目标接近了一步,